Denitrification of nitrate by the fungus Cylindrocarpon tonkinense.

نویسندگان

  • Tomo-o Watsuji
  • Naoki Takaya
  • Akira Nakamura
  • Hirofumi Shoun
چکیده

The denitrifying fungus Cylindrocarpon tonkinense was thought to be able to denitrify only nitrite (NO2-) but not nitrate (NO3-) to form nitrous oxide (N2O). Here we found, however, that C. tonkinense can denitrify NO3- under certain conditions. Presence of ammonium (NH3+) in addition to NO3- and the use of a fermentable sugar as an electron donor were key conditions for inducing the denitrifying activity. Such induction accompanied a remarkable increase in the intracellular level of the enzyme activities related to NO3- metabolism. These activities contained assimilatory type NADPH (or NADH)-dependent NO3- reductase (aNar), dissimilatory nitrite reductase (dNir), and nitric oxide reductase (P450nor), but did not contain ubiquinol-dependent, dissimilatory NO3- reductase (dNar). The denitrification was inhibited by tungstate, an inhibitor of Nar. These results demonstrated occurrence of a novel type of denitrification in C. tonkinense, in which assimilatory type Nar is possibly involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The possible involvement of copper-containing nitrite reductase (NirK) and flavohemoglobin in denitrification by the fungus Cylindrocarpon tonkinense.

The occurrence of denitrification and nitrate respiration among eukaryotes has been established during the last few decades. However, denitrification-related eukaryotic genes have been isolated from only a few fungi, and eukaryotic denitrification (or nitrate respiration) is still inadequately understood. In this study, we identified genes that were up-regulated under denitrifying conditions in...

متن کامل

مطالعه حذف نیترات از منابع آبی با استفاده از پودر منیزیم

Background and Objectives: Nowadays nitrate concentrations in surface water and especially in groundwater have increased in many locations in the world. Since nitrates cause many health and environmental concerns, increased nitrate concentrations in groundwater have led to rendered aquifers unusable as water sources. So, as the water demand is still increasing the throughout the world, decreasi...

متن کامل

The effect of metronidazole on biological denitrification of Pesudomonas stutzeri in wastewater

Background : Pseudomonus stutzeri bactrerium is one of the most important and effective denitrifier bacteria in wastewater. With regard to the importance of effects of nitrate on water resources and human health and role of metronidazole inhibition, this study was done with the aim of survey of effect of metronidazole different concentrations on biological denitrification of Pesudomonas stutzer...

متن کامل

Denitrification by the fungus Fusarium oxysporum involves NADH-nitrate reductase.

Fusarium oxysporum JCM11502 expresses a denitrifying (nitrate (NO(3)(-))-respiring) mechanism and can thrive under oxygen (O(2)) limitation. The fungus reduces NO(3)(-) to nitrite at the initial step of denitrification. In this study, we cloned the gene coding NADH-NO(3)(-) reductase (NADH-Nar) (niaD) from F. oxysporum JCM11502. The niaD gene complemented the defective NO(3)(-) assimilation by ...

متن کامل

Response to hypoxia, reduction of electron acceptors, and subsequent survival by filamentous fungi.

Filamentous fungi usually inhabit normoxic environments by utilizing oxygen as a substrate for respiration and for the biosynthesis of some essential cellular components. This review examines the metabolic mechanisms used by filamentous fungi under oxygen-limited (hypoxic) conditions. Denitrification is one mechanism through which Fusarium oxysporum and other fungi reduce nitrate or nitrite to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 67 5  شماره 

صفحات  -

تاریخ انتشار 2003